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VARIATION OF GAS VELOCITY IN A NORMAL IONIZING 
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A. A. BARMIN 

(Receive:?%?;) 1968) 

The variation of gas velocity in an ionizing shock wave propagating along an initial 
magnetic field (a normal ionizing wave), when the gas ma~etic,viscosi~ is considerably 
greater than the remaining dissipative coefficients , is investigated in this paper. 

Obtained results are used for the derivation of solution of the problem of motion of a 
conductive piston. Similar investigations in which the wave front orientation with respect 
to the magnetic field was arbitrary, were the subject of paper [I]. 

An analysis of the limit case of normal ionizing shock waves is of interest in view of 
the numerous experimental investigations of such waves (2 and 31. and also due to the 
presence of a number of singularities in its solution as compared with the general case. 
Variations of the magnetic field profile, of density and other parameters in a supersonic 
normal ionizing shock wave and in the subsequent MHD rarefaction wave were computed 
in paper [a] in connection with the problem of discharge. It was assumed there that in a 
varying magnetic field the ionizing wave becomes an ionizing Jouguet wave. It will be 
shown in the following that this assumption is correct. 

In the case of normal ionizing waves here considered the flow is a plane one, i. e. the 

gas velocity and the magnetic field lie in one and the same plane drawn through the 
normal to the wave front. We introduce the system of coordinates z, y, z with the x- 
axis directed along a normal to the wave, and the magnetic field component behind the 
wave if,, = 0. Let in this coordinate system u, and u be the velocity variations along 

the z - and w-axes. 
In the case under consideration intermediate ionizing shock waves are absent, i. e. out 

of the five wave types [S] three only are possible, viz. supersonic fast, supersonic and sub- 
sonic slow ionizing waves. In supersonic ionizing waves the magnetic field, and conse- 
quently also the gas velocity tangent component do not vary. In the uo-plane points 
lying along the u-axis to the right of u’ correspond to a fast wave. 
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Let ffg’= aa’ vf ~npr I fr, be the dimensionless velocity of sound in front of the wave. 
Then ~4’ .= G* when IQ > i where u* is the velocity variation of the wave behind which 
the temperature becomes critical, i. e. it belongs to the common boundary of areas with 
zero and nonzero electrical conductivities. For a~ < f 

2H, (1 - ao2) 
14’ = max [IL*, uz] 

( Uc = I/(r - i)/,Jcpr dr f 1 - 2adj 

Here the expression of Us; relates to a perfect gas. Fig. 1 and 2 show respectively the 
caseof a5<iand a,>l. 

Supersonic slow ionizing waves occur for 
u. < 1 and u* <uEonly. As the variation of the 
two velocity components in these waves is with- 
in certain limits arbitrary, a two-dimensional 
area corresponds to them in thquv-plane. Because 
in the case here considered this area is symmetric 
with respect to the u-axis, only that of its part 
which corresponds to v > 0 has been shown on 
Fig, 1. Its boundary consists of segments of lines 
along which one of the following conditions is 

fulfilled : 
* 

N L It- 1) the Jouguet condition, i.e. behind the wave 

Fig. 1 
the gas velocity relative to the ionizing wave is 
equal to the slow magnetosonic velocity u, = a_ 

u V 

w $I-- 

~ 

(curve ME), 
2) the ionizing wave velocity is equal to the velocity of the gas- 

dynamical wave behind which the atate (of the gas) becomes cri- 

N sr*-n 
tical (curve NM). 

PR 
A subsonic slow ionizing wave occurs for u* < nE, and is always 

preceded by a gas-dynamical shock wave behind which the state 
of the gas becomes critical. For the convenience of subsequent 

u 
exposition the velocity variation of the gas traversed by a system 

N of two waves, viz. the gas-dynamicai shock wave and the subsonic 

Fig. 2 
slow ionizing wave is shown on Fig. 1 and 2. For fia < 1 this velo- 

city variation belongs to area ~,VMNI/ (Fig. 1). and to area WNV 
for (10 > 1 (Fig.Z), and also to areas symmetric with respect to the u-axis. The bound- 
ary of this area consists of lines along which one of the following conditions is fulfilled: 

1) the ionizing wave velocity is zero (NV), 
2) velocity up = a_ (the Jouguet line), MW on Fig. 1, and NW on Fig.2. 
3) the ionizing wave propagation velocity relative to the gas-dynamical shock wave 

is zero (for ‘1a < 1 only, MN on Fig. 1). 
We shall now consider the self-similar problem of the gas fIow generated by the 

motion of a conductive piston. Let at the inital instant t = 0 a perfectly conductive flat 
piston begin to move at constant velocity U = ucX + UC,, from position z = 0. At the 
initial instant there is in area z > 0 nonconductive gas of constant density and pressure 

at rest in a homogeneous electrical I; = lSczand magnetic II = lI,c, fields which initi- 
ally are perpendicular to the piston face. Let us assume that the piston motion generates 
an ionizing shock wave behind which the gas electrical conductivity is infinitely great. 
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The gas motion is to be determined. The boundary condition at the piston (face) is the 
coincidence of the gas and piston velocities if the gas contacts the piston, or when there 
is a vacuum between the piston and gas by the linear relationship (U-UP). x 1I = 0 [S]. 

We note that the problem of electrical discharge is a particular case of the piston prob- 
lem as formulated above, when IL = 0, v = cE I II,. 

The stated problem is self-similar, and its solution consists of surfaces of discontinuity 
and simple waves separated by areas of constant values of all parameters. An electro- 
magnetic wave propagates in front, 

If the initial electric field is small in comparison with the magnetic one, and U/C et, 
then the magnetic field changes in the electromagnetic wave may be neglected, i. e. 

we can consider the magnetic field in front of the ionizing wave as being equal to the 
initial one. Hence, the electric field in front of an ionizing wave is determined by the 
solution of the problem, while the electromagnetic wave need not to be considered. 

We shall represent piston velocities in the vu-plane by dots. This plane then becomes 

subdivided into a number of areas to every point of which correspond solutions consisting 
of the same combination of waves. The form of these areas is qualitatively shown on 
Fig. 1 and 2 for the case of a0 < 1 and G, > 1 resepectively. 

Each area has been marked by the wave combination representing solutions for piston 
velocities appe~aining to that area. The following notations have been used: I+. I- for 
supersonic fast and slow ionizing waves, I-- for subsonic slow ionizing wave, f,-l,-- 

for slow ionizing Jouguet waves, R for magnetohydrodynamic slow rarefaction wave, and 
S for gas-dynamical shock wave behind which the state of gas is critical. 

We note that to the left of line M'MN on Fig. 1, and of line N’N on Fig. 2 there are 
no solutions with ionizing waves. Two solutions with supersonic and subsonic ionizing 

waves are possible in area M~~~V of Fig, 1, and in area N’NV of Fig. 2. We shall point 

out the basic singularities of solutions containing a normal ionizing wave as compared 

to the general case. 
1. Solutions with intermediate ionizing waves are absent. 

2. There are no solutions containing Alfven and magnetohydrodynamic slow shock 

waves. In an area in which a solution with subsonic ionizing waves is possible a solution 
with supersonic waves is also possible. In that case, however, solutions with subsonic waves 
correspond to the second leaf of solutions cl]. and are evidently unstable, so that a solu- 
tion containing supersonic waves is obtained. 

3. The change of sign of v in the solution results in the change of signs of the gas 
transverse velocity component and of that of the magnetic field only. 

We note that so1utions with supersonic slow ionizing waves are absent when a0 > 1 or 

l@ > U&. It follows from Fig. 1 and 2 that the solution of the discharge problem with 
supersonic waves consists of an ionizing wave and rarefaction wave, with the ionizing 

wave being either a slow ionizing JougUet wave, or a fast ionizing one, depending on inl- 
tial values and the applied electric field. 

This proves the assumption made by Taussing. We note that depending on the condi- 
tions of experiments either of the two modes indicated here were observed in experiments 
with electrical discharge in a tubular.ring in the presence of a magnetic field. 
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It has been established that the system of equations of magnetohydrodynamics for a non- 
dissipative plasma plane flow across a magnetic field will not be evolutionary if the Hall 
effect is taken into account. 

The numerical solution of the problem of plasma flow in a coaxial channel with the 
Hall effect taken into account had disclosed [l] the flow instability which is the more 
pronounced the stronger the Hall effect is. This instability of a nonstationary plasma 
flow develops in the vicinity of the anode, and has the character of an explosion in which 
a sharp rise of the current density and particle velocity takes place. An experimental 
investigation of such flows @] had disclosed the appearance of considerable jumps of 
potential in the anode vicinity with the flow itself becoming unstable, resulting in the 

so-called “current attachment” and severe anode erosion. 
These results and observations make it desirable to carry out a mathematical analysis 

of the two-dimensional plasma flow stability taking into account the Hall effect. The 

present paper is devoted to a comparatively simpler, but important result which has to be 
kept in mind in detailed investigations on this subject, namely that the equations of non- 
dissipative magnetohydrodynamics for a two-dimensional plane flow across a magnetic 
field are nonevolutionary when the Hall effect is taken into account. The term nonevo- 
lutionary (or incorrectly) [3] is understood here to mean the instability of solution of the 
Cauchy problem with respect to high frequency perturbations which increase arbitrarily 
fast. This result is also true for axisymmetric flows acted upon by an azimuthal magne- 
tic field, in so far as these may be considered to be locally plane. 

The flow of an inviscid and non-heat-conductive plasma in the presence of the Hall 
effect is defined (in a dimensionless form and with the usual notations Cl]) by Eqs. 


